
Release Notes for Simulink®

Coder™

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Release Notes for Simulink® Coder™

© COPYRIGHT 2011–2013 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

R2013a

Data, Function, and File Definition 2
Optimized interfaces for Simulink functions called in
Stateflow . 3

Shortened system-generated identifier names 4

Code Generation . 7
Shared utility name consistency across builds with
maximum identifier length control 8

Code Generation Advisor available on menu bar 9
Code generation build when reusable library subsystem
link status changes . 10

Protected models usable in model reference hierarchies . . 11

Deployment . 12
Simplified multi-instance code with support for referenced
models . 13

External mode control panel improvements and C API
access . 15

Hardware configuration relocation from Target Preferences
block to Configuration Parameters dialog 17

Support ending for Eclipse IDE in a future release 19
GRT malloc target to be removed in future release 20

Customization . 21
MakeRTWSettingsObject model parameter removed 22
Check bug reports for issues and fixes 23

R2012b

Unified and simplified code interface for ERT and GRT
targets . 26

iii

Convenient packNGo dialog for packaging generated code
and artifacts . 30

Reusable code for subsystems shared by referenced
models . 31

Code generation for protected models for accelerated
simulations and host targets . 32

Reduction of data copies with buses and more efficient
for-loops in generated code . 33

Unified rtiostream serial and TCP/IP target connectivity for
all host platforms . 34

Constant parameters generated as individual constants to
shared location . 35

Code efficiency enhancements . 36
Optimized code generation of Delay block 37
Search improvements in code generation report 38
GRT template makefile change for MAT-file logging
support . 39

Change for blocks that use TLC custom code functions in
multirate subsystems . 40

Model rtwdemo_f14 removed from software 41
Check bug reports for issues and fixes 42

R2012a

Simplified Call Interface for Generated Code 44
Incremental Code Generation for Top-Level Models 46
Minimal Header File Dependencies with packNGo
Function . 47

ASAP2 Enhancements for Model Referencing and
Structured Data . 48

Serial External Mode Communication Using rtiostream
API . 50

Improved Data Transfer in External Mode
Communication . 51

Changes for Desktop IDEs and Desktop Targets 52
Code Generation Report Enhancements 53
New Reserved Keywords for Code Generation 54
Improved MAT-File Logging . 55
rtwdemo_f14 Being Removed in a Future Release 56
New and Enhanced Demos . 57
Check bug reports for issues and fixes 58

iv Contents

R2011b

n-D Lookup Table Block Supports Tunable Table Size . . . 60
Complex Output Support in Generated Code for the
Trigonometric Function Block . 61

Code Optimizations for the Combinatorial Logic Block . . . 62
Code Optimizations for the Product Block 63
Enhanced MISRA C Code Generation Support for Stateflow
Charts . 64

Change for Constant Sample Time Signals in Generated
Code . 65

New Code Generation Advisor Objective for GRT
Targets . 66

Improved Integer and Fixed-Point Saturating Cast 67
Generate Multitasking Code for Concurrent Execution on
Multicore Processors . 68

Changes for Desktop IDEs and Desktop Targets 69
Reserved Keyword UNUSED_PARAMETER 70
Target API for Verifying MATLAB® Distributed Computing
Server™ (MDCS) Worker Configuration for Parallel
Builds . 71

License Names Not Yet Updated for Coder Product
Restructuring . 72

New and Enhanced Demos . 73
Check bug reports for issues and fixes 74

R2011a

Coder Product Restructuring . 76
Changes for Desktop IDEs and Desktop Targets 82
Code Optimizations for Discrete State-Space Block, Product
Block, and MinMax Block . 85

Ability to Share User-Defined Data Types Across
Models . 86

C API Provides Access to Root-Level Inputs and
Outputs . 87

ASAP2 File Generation Supports Standard Axis Format for
Lookup Tables . 88

ASAP2 File Generation Enhancements for Computation
Methods . 89

Lookup Table Block Option to Remove Input Range Checks
in Generated Code . 90

v

Reentrant Code Generation for Stateflow Charts That Use
Events . 91

Redundant Check Code Removed for Stateflow Charts That
Use Temporal Operators . 92

Support for Multiple Asynchronous Function Calls Into a
Model Block . 93

Changes to ver Function Product Arguments 94
Updates to Target Language Compiler (TLC) Semantics
and Diagnostic Information . 95

Change to Terminate Function for a Target Language
Compiler (TLC) Block Implementation 96

New and Enhanced Demos . 97
Check bug reports for issues and fixes 98

vi Contents

R2013a
Version: 8.4
New Features: Yes
Bug Fixes: Yes

1

R2013a

Data, Function, and File Definition

2

Optimized interfaces for Simulink® functions called in Stateflow®

Optimized interfaces for Simulink functions called
in Stateflow

Previously, when subsystem input and output signals were used inside a
Stateflow® chart, the generated code for the input and output signals was
copied into global variables. In R2013a, when the Subsystem block parameter
“Function packaging” is set to Inline, the subsystem inputs and outputs
called within a Stateflow chart are now local variables. This optimization
improves execution speed and memory usage.

3

R2013a

Shortened system-generated identifier names

For GRT targets, the length of the system-generated identifier names are
shortened to allow for more space for the user-specified components of the
generated identifier names. The name changes provide a more consistent and
predictable naming system that uses camel case, no underscores or plurals,
and consistent abbreviations for both a type and a variable.

The default for the system-generated identifiers per model are changed.

Before R2013a In R2013a Type

BlockIO, B B Type

ExternalInputs ExtU Type

ExternalInputSizes ExtUSize Type

ExternalOutputs ExtY Type

ExternaOutputSizes ExtYSize Type

Parameters P Type

ConstBlockIO ConstB Const Type

MachineLocalData MachLocal Const Type

ConstParam, ConstP ConstP Const Type, Global
Variable

ConstParamWithInit,
ConstWithInitP

ConstInitP Const Type, Global
Variable

D_Work, DWork DW Type, Global Variable

MassMatrixGlobal MassMatrix Type, Global Variable

PrevZCSigStates,
PrevZCSigState

PrevZCX Type, Global Variable

ContinuousStates, X X Type, Global Variable

StateDisabled, Xdis XDis Type, Global Variable

StateDerivatives,
Xdot

XDot Type, Global Variable

4

Shortened system-generated identifier names

Before R2013a In R2013a Type

ZCSignalValues,
ZCSignalValues

ZCV Type, Global Variable

DefaultParameters DefaultP Global Variable

GlobalTID GlobalTID Global Variable

InvariantSignals Invariant Global Variable

Machine MachLocal Global Variable

NSTAGES NSTAGES Global Variable

Object Obj Global Variable

TimingBridge TimingBrdg Global Variable

U U Global Variable

USize USize Global Variable

Y Y Global Variable

YSize YSize Global Variable

The default for the system-generated identifiers names per referenced model
or reusable subsystem are changed.

Before R2013a In R2013a Type

rtB, B B Type, Global Variable

rtC, C ConstB Type, Global Variable

rtDW, DW DW Type, Global Variable

rtMdlrefDWork ,
MdlrefDWork

MdlRefDW Type, Global Variable

rtP, P P Type, Global Variable

rtRTM, RTM RTM Type, Global Variable

rtX, X X Type, Global Variable

rtXdis, Xdis XDis Type, Global Variable

rtXdot, Xdot XDot Type, Global Variable

5

R2013a

Before R2013a In R2013a Type

rtZCE, ZCE ZCE Type, Global Variable

rtZCSV, ZCSV ZCV Type, Global Variable

For more information, see “Construction of Generated Identifiers”.

6

Code Generation

Code Generation

7

R2013a

Shared utility name consistency across builds with
maximum identifier length control

In R2013a, shared utility names remain consistent in the generated code
across multiple builds of your model. In addition, shared utility names
now comply with the Maximum identifier length parameter specified on
the Code Generation > Symbols pane in the Configuration Parameters
dialog box. The Maximum identifier length parameter does not apply to
fixed-point and DSP utilities.

8

Code Generation Advisor available on menu bar

Code Generation Advisor available on menu bar

To launch the Code Generation Advisor, on the model menu bar, select
Code > C/C++ Code > Code Generation Advisor. Alternatively, the Code
Generation Advisor remains available in the Configuration Parameters dialog
box, on the Code Generation pane.

For information about using the Code Generation Advisor to configure your
model to meet specific code generation objectives, see:

• “Application Objectives” in Simulink® Coder™

• “Application Objectives” in Embedded Coder®

9

R2013a

Code generation build when reusable library
subsystem link status changes

Shared functions for a reusable library subsystem are generated only for
resolved library links. If you enable or disable a library link for a reusable
subsystem, and then build your model, new code is generated.

10

Protected models usable in model reference hierarchies

Protected models usable in model reference
hierarchies

Previously, you could not protect a model and use it in a model reference
hierarchy.

In R2013a, you can use protected models in a model reference hierarchy. In
addition, R2013a includes enhancements to the programmatic interface as
well as the dialog for model protection.

To learn more about changes to the programmatic interface, see
Simulink.ModelReference.protect and to view the changes to the model
protection dialog, see “Create a Protected Model”.

11

R2013a

Deployment

12

Simplified multi-instance code with support for referenced models

Simplified multi-instance code with support for
referenced models

R2013a provides simplified multi-instance code deployment for GRT targets
with support for referenced models.

In previous releases, to generate reentrant, reusable code with dynamic
allocation of per-instance model data, you had to select a specialized target,
grt_malloc.tlc, for the model. If you selected the GRT malloc target for a
model, you could not include referenced models in your model design.

Beginning in R2013a, you can generate reentrant, reusable code for a GRT
model by selecting the model configuration option Generate reusable
code, which is located on the Code Generation > Interface pane of the
Configuration Parameters dialog box.

When you select Generate reusable code for a GRT model, the build process
generates reusable, multi-instance code that is reentrant, as follows:

• The generated model.c source file contains an allocation function that
dynamically allocates model data for each instance of the model.

• The generated code passes the real-time model data structure in, by
reference, as an argument to model_step and the other model entry point
functions.

• The real-time model data structure is exported with the model.h header
file.

With the new GRT model option Generate reusable code, you can generate
and deploy multi-instance code for your model without selecting a specialized
target, and you can include referenced models in your model design.

13

R2013a

Note Use of the grt_malloc.tlc target is no longer recommended. For
more information, see “GRT malloc target to be removed in future release”
on page 20.

14

External mode control panel improvements and C API access

External mode control panel improvements and C
API access

Improved External mode graphical controls
External mode dialog boxes are now consistent with other Simulink dialog
boxes, with improved layout, ability to resize, and consistent sets of buttons.
The improved dialog boxes include the External Mode Control Panel and
the subsidiary dialog boxes that you can open from it, External Signal &
Triggering and Enable Data Archiving. Here is the improved Enable
Data Archiving dialog box.

To view the improved External mode dialog boxes, open a model and select
Code > External Mode Control Panel.

15

R2013a

C API access from External mode simulations
In previous releases, the External mode and C API data interfaces for model
code were mutually exclusive. Beginning in R2013a, you can generate code
for your model with both the External mode and C API interfaces enabled.
Custom code now can access C API data structures during an External mode
simulation.

For more information, see “Generate External Mode and C API Data
Interfaces”.

16

Hardware configuration relocation from Target Preferences block to Configuration Parameters dialog

Hardware configuration relocation from Target
Preferences block to Configuration Parameters
dialog

The contents of the Target Preferences block have been relocated to the
new Target Hardware Resources tab on the Coder Target pane in the
Configuration Parameters dialog box.

The Target Preferences block has been removed from the Desktop Targets
block library.

If you open a model that contains a Target Preferences block, a warning
instructs you that the block is optional and can be removed from your model.

Opening the Target Preferences block automatically displays the Target
Hardware Resources tab.

17

R2013a

For instructions on how to use Target Hardware Resources to build and
run a model on desktop system, see “Model Setup”.

For information about specific parameters and settings, see “Code Generation:
Coder Target Pane”.

18

Support ending for Eclipse™ IDE in a future release

Support ending for Eclipse IDE in a future release

Support for the Eclipse™ IDE will end in a future release of the Embedded
Coder and Simulink Coder products.

19

R2013a

GRT malloc target to be removed in future release
Compatibility Considerations: Yes

The GRT malloc target will be removed from Simulink Coder software in
a future release.

Beginning in R2013a, you can no longer select the system target file
grt_malloc.tlc for a model using the list of targets in the System Target
File Browser. However, you can still specify the GRT malloc target. Either
enter the text grt_malloc.tlc in the System target file parameter field or
use the set_param command to set the SystemTargetFile parameter from
the MATLAB® command line.

Compatibility Considerations

If you are using the system target file grt_malloc.tlc to generate reentrant
code with dynamic memory allocation, switch to using grt.tlc with the
model configuration option Generate reusable code. As described in
“Simplified multi-instance code with support for referenced models” on page
13, the Generate reusable code option offers several advantages over
the GRT malloc target, including a simple multi-instance call interface and
support for model reference hierarchies. For more information, see the help
for Generate reusable code.

20

Customization

Customization

21

R2013a

MakeRTWSettingsObject model parameter removed
Compatibility Considerations: Yes

In R2013a, the model parameter MakeRTWSettingsObject has been
removed from the software. Before R2013a, custom target authors used
MakeRTWSettingsObject in build hook functions to get the value of the
current build folder path during the model build process.

Compatibility Considerations

If your STF_make_rtw_hook function uses the model parameter
MakeRTWSettingsObject in a get_param function call, you must update
the MATLAB code to use a different function call. For example, your hook
function might contain code similar to the following.

makertwObj = get_param(gcs,'MakeRTWSettingsObject');
buildDirPath = getfield(makertwObj,'BuildDirectory');

In R2013a, you can replace the above code with the following code, which
returns the current build folder path.

buildDirPath = rtwprivate('get_makertwsettings',gcs,'BuildDirectory');

For more information about build hook functions, see “Customize Build
Process with STF_make_rtw_hook File”.

22

Check bug reports for issues and fixes

Check bug reports for issues and fixes

Software is inherently complex and is not free of errors. The output of a code
generator might contain bugs, some of which are not detected by a compiler.
MathWorks reports critical known bugs brought to its attention on its Bug
Report system at www.mathworks.com/support/bugreports/. Use the Saved
Searches and Watched Bugs tool with the search phrase ‘‘Incorrect Code
Generation’’ to obtain a report of known bugs that produce code that might
compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release.
Examine periodically all bug reports for a release, as such reports may
identify inconsistencies between the actual behavior of a release you are using
and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and
validation strategy to identify potential bugs in your design, code, and tools.

Search R2013a Bug Reports
Known Bugs for Incorrect Code Generation:
www.mathworks.com/support/bugreports/?product=ALL&release=R2013a
&keyword=Incorrect+Code+Generation

All Known Bugs for This Product:
www.mathworks.com/support/bugreports/?release=R2013a&product=RT

23

http://www.mathworks.com/support/bugreports/
http://www.mathworks.com/support/bugreports/?product=ALL&release=R2013a&keyword=Incorrect+Code+Generation
http://www.mathworks.com/support/bugreports/?product=ALL&release=R2013a&keyword=Incorrect+Code+Generation
http://www.mathworks.com/support/bugreports/?release=R2013a&product=RT

R2012b
Version: 8.3
New Features: Yes
Bug Fixes: Yes

25

R2012b

Unified and simplified code interface for ERT and
GRT targets
Compatibility Considerations: Yes

Previously, Simulink Coder software provided a static main program for
GRT-based targets, matlabroot/rtw/c/grt/grt_main.c, that was distinct
from the static main program that Embedded Coder software provided for
ERT-based targets, matlabroot/rtw/c/ert/ert_main.c.

Beginning in R2012b, Simulink Coder software provides a unified static main
program for both GRT- and ERT-based targets:

matlabroot/rtw/c/src/common/rt_main.c

Generated code for GRT-based models is simplified and more consistent with
generated code for ERT-based models. As a result, GRT- and ERT-based
models can now use a common static main program. The benefits for
GRT-based models include:

• The generated rtModel structure has a minimal number of fields.

• Unused macros no longer appear in the generated code.

• Multitasking behavior is consistent between GRT and ERT generated code.

26

Unified and simplified code interface for ERT and GRT targets

Note

• If you are using the pre-R2012a GRT call interface (by selecting the model
option Classic call interface) with a static main program, use the static
main program matlabroot/rtw/c/grt/classic_main.c as a reference
point.

• The previous GRT and ERT static main program
files, matlabroot/rtw/c/grt/grt_main.c and
matlabroot/rtw/c/ert/ert_main.c, have been removed from the
software and are replaced by the new simplified and classic static
main program files, matlabroot/rtw/c/src/common/rt_main.c and
matlabroot/rtw/c/grt/classic_main.c.

• The generated main program file for ERT targets is still named
ert_main.c/cpp.

• If you have an Embedded Coder license, see also External mode support for
ERT targets with static main in the Embedded Coder release notes.

Compatibility Considerations

If you use a GRT-based target with a static main program, and if you
configure your models with the simplified call interface that was made
available to GRT targets in R2012a (that is, you do not use the model
option Classic call interface), you must update your static main program
to be compatible with the R2012b static main changes. Use the code in
matlabroot/rtw/c/src/common/rt_main.c as an example. The following
sections outline some of the key changes to look for.

Error status handling
In R2012a, GRT targets using the simplified call interface handled stop
simulation requests (during MAT-file logging or External mode simulation)
differently from ERT targets using the simplified call interface:

• For ERT targets, a stop simulation request caused the error status to be
set to Simulation finished. The main program (ert_main.c) treated

27

http://www.mathworks.com/help/releases/R2012b/ecoder/release-notes.html#btjto90
http://www.mathworks.com/help/releases/R2012b/ecoder/release-notes.html#btjto90

R2012b

this error status as a non-error, while treating all other non-NULL status
values as errors.

• For GRT targets, a stop simulation request did not cause the error status
to be set (it remained NULL). The main program treated all non-NULL
status values as errors.

Beginning in R2012b, the error status handling for GRT targets using the
simplified call interface has been changed to match ERT targets using the
simplified interface.

Unused macros
In R2012a, GRT targets using the simplified call interface generated macros
differently from ERT targets using the simplified call interface:

• For ERT targets, the build process did not generate macros if they were not
used in the generated code.

• For GRT targets, the build process unconditionally generated several
macros that were not used in generated code.

Beginning in R2012b, the build process no longer unconditionally generates
unused macros for GRT targets using the simplified call interface. The
macros affected include:

• rtm* macros for accessing unused fields of the rtModel structure, such as
ModelPtrs, StepSize, ChildSfunction, TPtr, and TaskTime

• IsSampleHit

Multitasking functions
In R2012a, GRT targets using the simplified call interface generated functions
for multitasking differently from ERT targets using the simplified call
interface:

• For ERT targets, the build process never generated the
rt_SimUpdateDiscreteEvents function and, by default, never
generated the rate_monotonic_scheduler function. (The
rate_monotonic_scheduler function is for MathWorks® internal use only.)

28

Unified and simplified code interface for ERT and GRT targets

• For GRT targets, the build process generated the functions
rt_SimUpdateDiscreteEvents and rate_monotonic_scheduler for
multitasking.

Beginning in R2012b, the build process no longer generates the multitasking
functions rt_SimUpdateDiscreteEvents and rate_monotonic_scheduler
for GRT targets using the simplified call interface.

29

R2012b

Convenient packNGo dialog for packaging
generated code and artifacts

R2012b adds model configuration parameters for packaging generated code
and artifacts as part of a model build. The following new parameters are
located on the Code Generation pane of the Configuration Parameters
dialog box:

• Package code and artifacts (PackageGeneratedCodeAndArtifacts) —
Specify whether to automatically package generated code and artifacts
for relocation.

• Zip file name (PackageName) — Specify the name of the .zip file in which
to package generated code and artifacts for relocation.

If you select Package code and artifacts, the build process runs the
packNGo function after code generation to package generated code and
artifacts for relocation. Selecting Package code and artifacts also enables
the Zip file name parameter for specifying a .zip file name. The default file
name is model.zip. (model represents the name of the top model for which
code is being generated.)

For more information, see Relocate Code to Another Development
Environment.

30

http://www.mathworks.com/help/releases/R2012b/rtw/ref/code-generation-pane-general.html#btissgh-1
http://www.mathworks.com/help/releases/R2012b/rtw/ref/code-generation-pane-general.html#btissgo-1
http://www.mathworks.com/help/releases/R2012b/rtw/ref/packngo.html
http://www.mathworks.com/help/releases/R2012b/rtw/ug/program-builds.html#bqufw6y
http://www.mathworks.com/help/releases/R2012b/rtw/ug/program-builds.html#bqufw6y

Reusable code for subsystems shared by referenced models

Reusable code for subsystems shared by referenced
models

In R2012b, you can configure a subsystem that is shared across referenced
models to generate code to the shared utilities folder. Code generation creates
a standalone function in the shared utilities folder that can be called by the
generated code of multiple referenced models.

To generate a single function for a reusable subsystem, the subsystem must
be an active link to a subsystem in a library. For more information, see Code
Reuse For Subsystems Shared Across Referenced Models.

31

http://www.mathworks.com/help/releases/R2012b/rtw/ug/code-generation-of-reusable-library-subsystem.html
http://www.mathworks.com/help/releases/R2012b/rtw/ug/code-generation-of-reusable-library-subsystem.html

R2012b

Code generation for protected models for accelerated
simulations and host targets

A protected model can include the generated code of the model. To create a
protected model, right-click the referenced model and select Subsystem &
Model Reference > Create Protected Model for Selected Block to open
the Create Protected Model dialog box. You can select options that:

• Include the generated C code of the referenced model.

• Obfuscate the generated code.

• Create a protected model report.

You can then package the protected model, generated code, and protected
model report for a third party to use for accelerated simulations and code
generation. In R2012b, the file extension for protected models is .slxp
(instead of the .mdlp extension in previous releases).

For more information, see Protect a Referenced Model and Package a
Protected Model.

32

http://www.mathworks.com/help/releases/R2012b/rtw/ug/creating-a-protected-model.html
http://www.mathworks.com/help/releases/R2012b/rtw/ug/creating-a-protected-model.html
http://www.mathworks.com/help/releases/R2012b/rtw/ug/packaging-a-protected-model.html
http://www.mathworks.com/help/releases/R2012b/rtw/ug/packaging-a-protected-model.html

Reduction of data copies with buses and more efficient for-loops in generated code

Reduction of data copies with buses and more
efficient for-loops in generated code

Reduction of cyclomatic complexity with virtual bus expansion
In R2012b, code generation reduces cyclomatic complexity introduced by
virtual bus expansion. This enhancement improves execution speed, reduces
code size, and enables additional optimizations that reduce data copies and
RAM consumption.

Simplifying for loop control statements
Improvements to for loops in the generated code include lifting invariance
out of the for loop header and simplifying complex control statements in
the for loop header. This enhancement improves execution speed and the
readability of the generated code.

33

R2012b

Unified rtiostream serial and TCP/IP target
connectivity for all host platforms

Beginning in R2012b, Simulink Coder software provides unified rtiostream
serial and TCP/IP target connectivity for all host platforms. Specifically,
R2012b extends rtiostream serial connectivity to Linux® and Macintosh host
platforms; previously, only Windows® host platforms were supported.

If you have implemented rtiostream serial connectivity for your embedded
target environment, you can use rtiostream serial communication on any
valid host to connect a Simulink model to your embedded target, using
External mode or processor-in-the-loop (PIL) simulation.

Note Simulink Coder software provides rtiostream serial and TCP/IP
target connectivity for all host platforms. If required, you can implement
custom rtiostream connectivity—for example, to support a communication
protocol other than serial or TCP/IP—for both the host platform and the
embedded target environment.

34

Constant parameters generated as individual constants to shared location

Constant parameters generated as individual
constants to shared location

Previously, constant parameters were generated to a model-specific structure,
rtConstP, in the model_data.c file. If constant parameters are part of a
model reference hierarchy or the model configuration parameter Shared
code placement is set to Shared location, they are generated to a shared
location. In R2012b, shared constant parameters are generated as individual
constants to the const_params.c file in the_sharedutils folder. This code
generation improvement generates less code and allows for subsystem code
reuse across models. For more information, see Shared Constant Parameters
for Code Reuse.

35

http://www.mathworks.com/help/releases/R2012b/rtw/ug/code-generation-of-shared-constant-parameters-for-code-reuse.html
http://www.mathworks.com/help/releases/R2012b/rtw/ug/code-generation-of-shared-constant-parameters-for-code-reuse.html

R2012b

Code efficiency enhancements

The following code generation enhancements improve the efficiency of the
generated code by:

• Removing a root-level outport data copy in the generated code when data
is from a Stateflow chart. This enhancement reduces RAM and ROM
consumption and improves execution speed.

• Removing a data copy for masked subsystems when a parameter is a
matrix data type. This enhancement reduces RAM and ROM consumption
and improves execution speed.

• Removing a limitation where the joint presence of initial value and function
prototype control prevent removal of the root-level outport data copy in
the generated code. The outport data copy is removed when the initial
value is zero. This enhancement reduces RAM and ROM consumption and
improves execution speed.

• Removing an unnecessary global variable generated by a For Each
Subsystem or as a result from the selected configuration parameter Pack
Boolean data into bitfields. In R2012b, the variable is removed from the
global block structure which reduces global RAM.

36

Optimized code generation of Delay block

Optimized code generation of Delay block

In R2011b, a new Delay block replaced the Integer Delay block. The Delay
block now supports optimized code generation.

37

R2012b

Search improvements in code generation report

Searching text in the code generation report highlights results and then
scrolls to the first result. Press Enter to scroll through the subsequent search
results. If the search returns no results, the background of the search box is
highlighted red.

38

GRT template makefile change for MAT-file logging support

GRT template makefile change for MAT-file logging
support
Compatibility Considerations: Yes

In R2012b, the template makefiles (TMFs) for GRT-based targets have
been updated to better support the MAT-file logging (MatFileLogging)
model option, which was added to the Interface pane of the Configuration
Parameters dialog box for GRT targets in R2010b.

Compatibility Considerations

If you authored a TMF for a GRT-based target, you should update your TMF
to better support the MAT-file logging option. If MAT-file logging is
selected for a GRT model, your existing TMF will continue to work. But if
MAT-file logging is cleared, compilation of the model code will fail unless
your TMF is updated.

To update your TMF, do the following:

1 Add a makefile variable token for MAT-file logging to the TMF:

MAT_FILE = |>MAT_FILE<|

2 Use this variable to create a -D define that is part of the compiler
invocation. For example

CPP_REQ_DEFINES = -DMODEL=$(MODEL) -DRT -DNUMST=$(NUMST) \

-DTID01EQ=$(TID01EQ) -DNCSTATES=$(NCSTATES) -DUNIX \

-DMT=$(MULTITASKING) -DHAVESTDIO -DMAT_FILE=$(MAT_FILE)

For examples of this update, see the GRT-based TMFs provided with Simulink
Coder, located at matlabroot/rtw/c/grt/grt_*.tmf.

39

http://www.mathworks.com/help/releases/R2012b/rtw/ref/code-generation-pane-interface.html#bq9khar-1

R2012b

Change for blocks that use TLC custom code functions
in multirate subsystems
Compatibility Considerations: Yes

In earlier releases, blocks could use the TLC functions LibSystem*CustomCode
to register custom code to be placed inside the gcd rate of a multirate
subsystem. Beginning in R2012b, blocks that register custom code for this
purpose must additionally register use of custom code with the Simulink
software, using the SimStruct macro ssSetUsingTLCCustomCodeFunctions.
Registering allows the Simulink engine to perform necessary adjustments to
handle multiple rates for subsystems with custom code. Code generation will
generate an error if all of the following conditions are true:

• An S-function uses LibSystem*CustomCode functions without registering
their use to Simulink.

• The S-function is placed in a multirate subsystem.

• No nonvirtual block in the subsystem has a sample time equal to the gcd
of the sample times in the system.

Compatibility Considerations

If you authored a block that uses any of the TLC LibSystem*CustomCode
functions to register custom code to be placed inside multirate subsystem
functions, the block now must register custom code use with the Simulink
software. Modify the mdlInitializeSizes code in the block to call the
ssSetUsingTLCCustomCodeFunctions macro, as shown below:

ssSetUsingTLCCustomCodeFunctions (S, 1);

40

Model rtwdemo_f14 removed from software

Model rtwdemo_f14 removed from software
Compatibility Considerations: Yes

In R2012b, the example model rtwdemo_f14 has been removed from the
Simulink Coder software.

Compatibility Considerations

If you need an example model with similar content, open the Simulink
example model sldemo_f14 and configure it with a fixed-step solver. If you
need an example GRT model that is configured for code generation, see the
Simulink Coder models in the rtwdemos list.

41

R2012b

Check bug reports for issues and fixes

Software is inherently complex and is not free of errors. The output of a code
generator might contain bugs, some of which are not detected by a compiler.
MathWorks reports critical known bugs brought to its attention on its Bug
Report system at www.mathworks.com/support/bugreports/. Use the Saved
Searches and Watched Bugs tool with the search phrase ‘‘Incorrect Code
Generation’’ to obtain a report of known bugs that produce code that might
compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release.
Examine periodically all bug reports for a release, as such reports may
identify inconsistencies between the actual behavior of a release you are using
and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and
validation strategy to identify potential bugs in your design, code, and tools.

Search R2012b Bug Reports
Known Bugs for Incorrect Code Generation:
www.mathworks.com/support/bugreports/?product=ALL&release=R2012b
&keyword=Incorrect+Code+Generation

All Known Bugs for This Product:
www.mathworks.com/support/bugreports/?release=R2012b&product=RT

42

http://www.mathworks.com/support/bugreports/
http://www.mathworks.com/support/bugreports/?product=ALL&release=R2012b&keyword=Incorrect+Code+Generation
http://www.mathworks.com/support/bugreports/?product=ALL&release=R2012b&keyword=Incorrect+Code+Generation
http://www.mathworks.com/support/bugreports/?release=R2012b&product=RT

R2012a
Version: 8.2
New Features: Yes
Bug Fixes: Yes

43

R2012a

Simplified Call Interface for Generated Code

In previous releases, GRT and GRT-based targets generated code with
a GRT-specific call interface, using the model entry functions model,
MdlInitializeSizes, MdlInitializeSampleTimes, MdlStart, MdlOutputs,
MdlUpdate, and MdlTerminate. ERT and ERT derived targets, by default,
generated code with a simplified call interface, using the model entry functions
model_initialize, model_step, and model_terminate. (Additionally,
model options could be applied to customize the simplified call interface,
such as clearing Single output/update function or Terminate function
required.)

In R2012a, GRT targets can now generate code with the same simplified call
interface as ERT targets. This simplifies the task of interacting with the
generated code. Target authors can author simpler main.c or .cpp programs
for GRT targets. Also, it is no longer required to author different main
programs for GRT and ERT targets.

To preserve compatibility with models, GRT-based custom targets, and
GRT main modules created in earlier releases, R2012a provides the model
option Classic call interface (GRTInterface), which is located on the Code
Generation > Interface pane of the Configuration Parameters dialog box. If
you select Classic call interface, code generation generates model function
calls compatible with the main program module of the GRT target in models
created before R2012a. If you clear the Classic call interface option, code
generation generates the simplified call interface.

44

http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ref/bq259j_-1.html#bq9i70c-1

Simplified Call Interface for Generated Code

Note

• The Classic call interface (GRTInterface) option is available for both
GRT-based and ERT-based models. For Embedded Coder users, it replaces
the ERT model option GRT-compatible call interface (GRTInterface).

• For new GRT and ERT models, the Classic call interface option is cleared
by default. New models use the simplified call interface.

• For GRT models created before R2012a, Classic call interface is selected
by default. Existing GRT models can continue to use the pre-R2012a
GRT-specific call interface.

45

R2012a

Incremental Code Generation for Top-Level Models

R2012a provides the ability to omit unnecessary code regeneration from
top model builds, allowing top models to be built incrementally. This can
significantly reduce model build times.

Previously, each model build fully regenerated and compiled the top
model code. Beginning in R2012a, the build process checks the structural
checksum of the model to determine whether changes to the model require
code regeneration. If code regeneration is required, the build process fully
regenerates and compiles the model code, in the manner of earlier releases.
However, if the generated code is found to be current with respect to the
model, the build process does the following:

1 Skips model code regeneration.

2 Still calls build process hooks, including STF_make_rtw_hook functions and
the post code generation command.

3 Reruns the makefile to make sure external dependencies are recompiled
and relinked.

Additionally, command-line options exist for controlling or overriding the
new build behavior. For more information, see Control Regeneration of Top
Model Code.

46

http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/bs61oev.html#btd32ub-1
http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/bs61oev.html#btd32ub-1

Minimal Header File Dependencies with packNGo Function

Minimal Header File Dependencies with packNGo
Function

The packNGo function, which packages model code files in a zip file for
relocation, now by default includes only the minimal header files required in
the zip file. The packNGo function now runs a preprocessor to determine the
minimal header files required to build the code. Previously, packNGo included
all header files found on the include path.

To revert to the behavior of previous releases, you can use the following
form of the function:

>> packNGo(buildInfo,{'minimalHeaders',false})

47

http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ref/packngo.html

R2012a

ASAP2 Enhancements for Model Referencing and
Structured Data

Ability to Merge ASAP2 Files Generated for Top and Referenced
Models
R2012a provides the ability to merge ASAP2 files generated for top and
referenced models into a single ASAP2 file. To merge ASAP2 files for a given
model, use the function rtw.asap2MergeMdlRefs, which has the following
syntax:

[status,info]=rtw.asap2MergeMdlRefs(topModelName,asap2FileName)

For more information, see Merge ASAP2 Files Generated for Top and
Referenced Models

ASAP2 File Generation for Test Pointed Signals and States
ASAP2 file generation has been enhanced to generate ASAP2
MEASUREMENT records for the following data, without the need to resolve
them to Simulink data objects:

• Test-pointed Simulink signals, usable inside reusable subsystems

• Test pointed Stateflow states, allowing you to monitor which state is active
during real-time testing

• Test-pointed Stateflow local data

• Root-level inports and outports

Options to control ASAP2 record generation for structured data are defined in
matlabroot/toolbox/rtw/targets/asap2/asap2/user/asap2setup.tlc:

• ASAP2EnableTestPoints enables or disables record generation for test
pointed Simulink signals, test pointed Stateflow states, and test-pointed
Stateflow local data (enabled by default)

• ASAP2EnableRootLevelIO enables or disables record generation for
root-level inports and outports (disabled by default)

For more information, see Customize an ASAP2 File.

48

http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/bs61qx2.html#btdw4d5
http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/bs61qx2.html#btdw4d5
http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/f5595.html

ASAP2 Enhancements for Model Referencing and Structured Data

ASAP2 File Generation for Tunable Structure Parameters
ASAP2 file generation has been enhanced to generate ASAP2
CHARACTERISTIC records for tunable structure parameters. This allows
you to tune structure parameters with ASAP2 tools and potentially manage
large parameter sets.

For more information, see Customize an ASAP2 File.

49

http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/f5595.html

R2012a

Serial External Mode Communication Using
rtiostream API

In R2012a, you can create a serial transport layer for Simulink external mode
communication using the rtiostream API. For more information, see Create
a Transport Layer for External Communication.

50

http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/br54_yv.html
http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/br54_yv.html

Improved Data Transfer in External Mode Communication

Improved Data Transfer in External Mode
Communication

In Simulink External mode communication, the rt_OneStep function runs
in the foreground and the while loop of the main function runs in the
background. See Real-Time Single-Tasking Systems. Previously, with code
generated for GRT and Embedded Coder bareboard ERT targets, data
transfer between host and server was performed by functions within the
model step function in rt_OneStep. The data transfer between host and
server (in the foreground) would slow down model execution, potentially
impairing real-time performance.

Now, the function that is responsible for data transfer between host and
server (rtExtModeOneStep) is inserted in the while loop of the main function.
As the execution of the while loop in the main function is a background task,
real-time performance potentially is enhanced.

51

http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/f13146.html

R2012a

Changes for Desktop IDEs and Desktop Targets

• “Support Added for GCC 4.4 on Host Computers Running Linux with
Eclipse IDE” on page 52

• “Limitation: Parallel Builds Not Supported for Desktop Targets” on page 52

Support Added for GCC 4.4 on Host Computers Running Linux
with Eclipse IDE
Simulink Coder software now supports GCC 4.4 on host computers running
Linux with Eclipse IDE. This support is on both 32-bit and 64-bit host Linux
platforms.

If you were using an earlier version of GCC on Linux with Eclipse, upgrade
to GCC 4.4.

Limitation: Parallel Builds Not Supported for Desktop Targets
The Simulink Coder product provides an API for MATLAB Distributed
Computing Server™ and Parallel Computing Toolbox™ products. The API
allows these products to perform parallel builds that reduce build time for
referenced models. However, the API does not support parallel builds for
models whose System target file parameter is set to idelink_ert.tlc or
idelink_grt.tlc. Thus, you cannot perform parallel builds for Desktop
Targets.

52

http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/bs61oev.html#br2mrkl-1
http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/bs61oev.html#br2mrkl-1
http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ref/bqnb76d-1.html#bsz4qhq-1
http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ref/bqnb76d-1.html#bsz4qhq-1

Code Generation Report Enhancements

Code Generation Report Enhancements

Post-build Report Generation
In previous releases, if you did not configure your model to create a code
generation report, you had to build your model again to open the code
generation report. You can now generate a code generation report after
the code generation process completes without building your model again.
This option is available on the model diagram Tools menu. After building
your model, select Tools > Code Generation > Code Generation
Report > Open Model Report. You can also open a code generation report
after building a subsystem. For more information on creating and opening the
code generation report, see Generate an HTML Code Generation Report.

Generate Code Generation Report Programmatically
At the MATLAB command line, you can generate, open, and close an HTML
Code Generation Report with the following functions:

• coder.report.generate generates the code generation report for the
specified model.

• coder.report.open opens an existing code generation report.

• coder.report.close closes the code generation report.

Searching in the Code Generation Report
You can now search within the code generation report using a search box in
the navigation section. After entering text in the search box, the current page
scrolls to the first match and highlights all of the matches on the page. To
access the Search text box, press Ctrl-F.

53

http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/f1146799.html
http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ref/coder.report.generate.html
http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ref/coder.report.open.html
http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ref/coder.report.close.html

R2012a

New Reserved Keywords for Code Generation

The Simulink Coder software includes the following reserved keywords to the
Simulink Coder Code Generation keywords list. For more information, see
Reserved Keywords.

ERT LINK_DATA_STREAM NUMST RT_MALLOC

HAVESTDIO MODEL PROFILING_ENABLED TID01EQ

INTEGER_CODE MT PROFILING_NUM_SAMPLES USE_RTMODEL

LINK_DATA_BUFFER_SIZE NCSTATES RT VCAST_FLUSH_DATA

54

http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/br5qpiq.html#brchnse-1

Improved MAT-File Logging

Improved MAT-File Logging

R2012a enhances Simulink Coder MAT-file logging to allow logging of
multiple data points per time step, by reallocating buffer memory during
target execution. Generated code logging results now match simulation
results for blocks executing multiple times per step, such as blocks in an
iterator subsystem. Previously, code generation issued a warning that the
logged results for blocks executing in an iterator subsystem might not match
the results from simulation.

55

R2012a

rtwdemo_f14 Being Removed in a Future Release
Compatibility Considerations: Yes

The demo model rtwdemo_f14 will be removed in a future release of Simulink
Coder software.

Compatibility Considerations

In R2012a, you can still open rtwdemo_f14 by entering rtwdemo_f14 in
the MATLAB Command Window. Going forward, transition to using f14,
sldemo_f14, or a Simulink Coder model in the rtwdemos list.

56

New and Enhanced Demos

New and Enhanced Demos

The following demos have been enhanced in R2012a:

Demo... Now...

rtwdemo_asap2 • Illustrates ASAP2 file generation for test pointed
signals and states.

• Shows how to generate a single ASAP2 file from
files for top and referenced models.

• Generates STD_AXIS and FIX_AXIS descriptions
for lookup table breakpoints.

rtwdemo_configuration_set Shows how to use the Code Generation Advisor and
the Simulink.ConfigSet saveAs method.

57

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.configset.html#bsef0i8-1

R2012a

Check bug reports for issues and fixes

Software is inherently complex and is not free of errors. The output of a code
generator might contain bugs, some of which are not detected by a compiler.
MathWorks reports critical known bugs brought to its attention on its Bug
Report system at www.mathworks.com/support/bugreports/. Use the Saved
Searches and Watched Bugs tool with the search phrase ‘‘Incorrect Code
Generation’’ to obtain a report of known bugs that produce code that might
compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release.
Examine periodically all bug reports for a release, as such reports may
identify inconsistencies between the actual behavior of a release you are using
and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and
validation strategy to identify potential bugs in your design, code, and tools.

Search R2012a Bug Reports
Known Bugs for Incorrect Code Generation:
www.mathworks.com/support/bugreports/?product=ALL&release=R2012a
&keyword=Incorrect+Code+Generation

All Known Bugs for This Product:
www.mathworks.com/support/bugreports/?release=R2012a&product=RT

58

http://www.mathworks.com/support/bugreports/
http://www.mathworks.com/support/bugreports/?product=ALL&release=R2012a&keyword=Incorrect+Code+Generation
http://www.mathworks.com/support/bugreports/?product=ALL&release=R2012a&keyword=Incorrect+Code+Generation
http://www.mathworks.com/support/bugreports/?release=R2012a&product=RT

R2011b
Version: 8.1
New Features: Yes
Bug Fixes: Yes

59

R2011b

n-D Lookup Table Block Supports Tunable Table Size

The n-D Lookup Table block provides new parameters for specifying a tunable
table size in the generated code.

This enhancement enables you to change the size and values of your lookup
table and breakpoint data without regenerating or recompiling the code.

60

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/ndlookuptable.html

Complex Output Support in Generated Code for the Trigonometric Function Block

Complex Output Support in Generated Code for the
Trigonometric Function Block

In previous releases, the imaginary part of a complex output signal was
always zero in the generated code for the Trigonometric Function block. In
R2011b, this limitation no longer exists. Code that you generate for a function
in this block now supports complex outputs.

61

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/trigonometricfunction.html

R2011b

Code Optimizations for the Combinatorial Logic Block

The Simulink Coder build process uses a new technique to provide more
efficient code for the Combinatorial Logic block.

Benefits include:

• Reuse of variables

• Dead code elimination

• Constant folding

• Expression folding

For example, in previous releases, temporary buffers were created to carry
concatenated signals for this block. In R2011b, the build process eliminates
unnecessary temporary buffers and writes the concatenated signal to the
downstream global buffer directly. This enhancement reduces the stack size
and improves code execution speed.

62

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/combinatoriallogic.html

Code Optimizations for the Product Block

Code Optimizations for the Product Block
Compatibility Considerations: Yes

The Simulink Coder build process provides more efficient code for matrix
inverse and division operations in the Product block. The following summary
describes the benefits and when each benefit is available:

Benefit Small matrices
(2-by-2 to
5-by-5)

Medium
matrices
(6-by-6 to
20-by-20)

Large matrices
(larger than
20-by-20)

Faster code
execution time

Yes, much faster No, slightly
slower

Yes, faster

Reduced ROM
and RAM usage

Yes, for real
values

Yes, for real
values

Yes, for real
values

Reuse of
variables

Yes Yes Yes

Dead code
elimination

Yes Yes Yes

Constant folding Yes Yes Yes

Expression
folding

Yes Yes Yes

Consistency with
MATLAB Coder

Yes Yes Yes

Compatibility Considerations

In the following cases, the generated code might regress from previous
releases:

• The ROM and RAM usage increase for complex input data types.

• For blocks configured with 3 or more inputs of different dimensions,
the code might include an extra buffer to store temporary variables for
intermediate results.

63

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/product.html

R2011b

Enhanced MISRA C Code Generation Support for
Stateflow Charts

In previous releases, the code generated to check whether or not a state in a
Stateflow chart was active included a line that looked something like this:

if (mdl_state_check_er_DWork.is_active_c1_mdl_state_c == 0)

In R2011b, that line has been modified to:

if (mdl_state_check_er_DWork.is_active_c1_mdl_state_c == 0U)

This enhancement supports MISRA C® 2004, rule 10.1.

64

Change for Constant Sample Time Signals in Generated Code

Change for Constant Sample Time Signals in
Generated Code
Compatibility Considerations: Yes

In previous releases, constant sample time signals were initialized even if the
Data Initialization field of their custom storage class was set to None.

In R2011b, constant sample time signals using a custom storage class for
which the Data Initialization field is set to None will not be initialized for
non-conditionally executed systems in generated code.

Compatibility Considerations

If you use such constant time signals, you will notice that they are not
initialized in the generated code in R2011b. To enable their initialization,
change the setting of the Data Initialization field of their custom storage
class from None to another value.

65

R2011b

New Code Generation Advisor Objective for GRT
Targets

In R2011b, Execution efficiency is now available as a Code Generation
Advisor objective for models with generic real-time (GRT) targets. You can
use this objective to achieve faster code execution times for your models. For
more information, see Application Objectives.

66

http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/br1kmvm-1.html

Improved Integer and Fixed-Point Saturating Cast

Improved Integer and Fixed-Point Saturating Cast

Simulink Coder software now eliminates more dead branches in both integer
and fixed-point saturation code.

67

R2011b

Generate Multitasking Code for Concurrent Execution
on Multicore Processors

The Simulink Coder product extends the concurrent execution modeling
capability of the Simulink product. With Simulink Coder, you can generate
multitasking code that uses POSIX threads (Pthreads) or Windows threads
for concurrent execution on multicore processors running Linux, Mac OS X,
or Windows.

See Configuring Models for Targets with Multicore Processors.

68

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bs13l5v.html

Changes for Desktop IDEs and Desktop Targets

Changes for Desktop IDEs and Desktop Targets

• “New Target Function Library for Intel IPP/SSE (GNU)” on page 69

• “Support Added for Single Instruction Multiple Data (SIMD) with Intel
Processors” on page 69

New Target Function Library for Intel IPP/SSE (GNU)
This release adds a new Target Function Library (TFL), Intel IPP/SSE
(GNU), for the GCC compiler. This library includes the Intel Performance
Primitives (IPP) and Streaming SIMD Extensions (SSE) code replacements.

Support Added for Single Instruction Multiple Data (SIMD) with
Intel Processors
This release adds support for the SIMD capabilities of the Intel® processors.
The use of SIMD instructions increases throughput compared to traditional
Single Instruction Single Data (SISD) processing.

The Intel IPP/SSE (GNU) TFL (code replacement library) optimizes
generated code for SIMD.

The performance of the SIMD-enabled executable depends on several factors,
including:

• Processor architecture of the target

• Optimized library support for the target

• The type and number of TFL replacements in the generated algorithmic
code

Evaluate the performance of your application before and after using the TFL.

To use the SIMD capabilities with GCC and Intel processors, enable the Intel
IPP/SSE (GNU) TFL. See Code Replacement Library (CRL).

69

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsyo0zz-1.html

R2011b

Reserved Keyword UNUSED_PARAMETER

The Simulink Coder software adds the UNUSED_PARAMETER macro to
the reserved keywords list for code generation. To view the complete
list, see Reserved Keywords. In R2011b, code generation now defines
UNUSED_PARAMETER in rt_defines.h. Previously, it was defined in
model_private.h.

70

http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/br5qpiq.html#brchnse-1

Target API for Verifying MATLAB® Distributed Computing Server™ (MDCS) Worker Configuration for Parallel Builds

Target API for Verifying MATLAB® Distributed
Computing Server™ (MDCS) Worker Configuration
for Parallel Builds

R2010b added the ability to use remote workers in MDCS configurations for
parallel builds of model reference hierarchies. This introduced the possibility
that parallel workers might have different configurations, some of which
might not be compatible with a specific Simulink Coder target build. For
example, the required compiler might not be installed on a worker system.

R2011b provides a programming interface that target authors can use to
automatically check the configuration of parallel workers and, if the parallel
workers are not set up as required, take action, such as throwing an error or
reverting to sequential builds. For more information, see Support Model
Referencing in the Simulink Coder documentation.

For more information about parallel builds, see Reduce Build Time for
Referenced Models in the Simulink Coder documentation.

71

http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/bse3c9v-1.html#bru4now-1
http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/bse3c9v-1.html#bru4now-1
http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/bs61oev.html#br2mrkl-1
http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/bs61oev.html#br2mrkl-1

R2011b

License Names Not Yet Updated for Coder Product
Restructuring

The Simulink Coder and Embedded Coder license name strings stored in
license.dat and returned by the license ('inuse') function have not yet
been updated for the R2011a coder product restructuring. Specifically, the
license ('inuse') function continues to return 'real-time_workshop'
for Simulink Coder and 'rtw_embedded_coder' for Embedded Coder, as
shown below:

>> license('inuse')
matlab
matlab_coder
real-time_workshop
rtw_embedded_coder
simulink
>>

The license name strings intentionally were not changed, in order to avoid
license management complications in situations where Release 2011a
or higher is used alongside a preR2011a release in a common operating
environment. MathWorks plans to address this issue in a future release.

For more information about using the function, see the license
documentation.

72

http://www.mathworks.com/help/releases/R2012a/techdoc/ref/license.html

New and Enhanced Demos

New and Enhanced Demos

The following demos have been enhanced in R2011b:

Demo... Now...

rtwdemo_pmsmfoc_script Shows how you can perform system-level
simulation and algorithmic code generation using
Field-Oriented Control for a Permanent Magnet
Synchronous Machine

73

R2011b

Check bug reports for issues and fixes

Software is inherently complex and is not free of errors. The output of a code
generator might contain bugs, some of which are not detected by a compiler.
MathWorks reports critical known bugs brought to its attention on its Bug
Report system at www.mathworks.com/support/bugreports/. Use the Saved
Searches and Watched Bugs tool with the search phrase ‘‘Incorrect Code
Generation’’ to obtain a report of known bugs that produce code that might
compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release.
Examine periodically all bug reports for a release, as such reports may
identify inconsistencies between the actual behavior of a release you are using
and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and
validation strategy to identify potential bugs in your design, code, and tools.

Search R2011b Bug Reports
Known Bugs for Incorrect Code Generation:
www.mathworks.com/support/bugreports/?product=ALL&release=R2011b
&keyword=Incorrect+Code+Generation

All Known Bugs for This Product:
www.mathworks.com/support/bugreports/?release=R2011b&product=RT

74

http://www.mathworks.com/support/bugreports/
http://www.mathworks.com/support/bugreports/?product=ALL&release=R2011b&keyword=Incorrect+Code+Generation
http://www.mathworks.com/support/bugreports/?product=ALL&release=R2011b&keyword=Incorrect+Code+Generation
http://www.mathworks.com/support/bugreports/?release=R2011b&product=RT

R2011a
Version: 8.0
New Features: Yes
Bug Fixes: Yes

75

R2011a

Coder Product Restructuring

• “Product Restructuring Overview” on page 76

• “Resources for Upgrading from Real-Time Workshop or Stateflow®

Coder™” on page 77

• “Migration of Embedded MATLAB Coder Features to MATLAB® Coder™”
on page 78

• “Migration of Embedded IDE Link and Target Support Package Features
to Simulink® Coder™ and Embedded Coder” on page 78

• “User Interface Changes Related to Product Restructuring” on page 79

• “Simulink Graphical User Interface Changes” on page 80

Product Restructuring Overview
In R2011a, the Simulink Coder product combines and replaces the Real-Time
Workshop® and Stateflow Coder products. Additionally,

• The Real-Time Workshop facility for converting MATLAB code to C/C++
code, formerly referred to as Embedded MATLAB® Coder, has migrated to
the new MATLAB Coder product.

• The previously existing products Embedded IDE Link™ and Target
Support Package™ have been integrated into the new Simulink Coder and
Embedded Coder products.

The following figure shows the R2011a transitions for C/C++ code generation
related products, from the R2010b products to the new MATLAB Coder,
Simulink Coder, and Embedded Coder products.

76

Coder Product Restructuring

Simulink
Coder

MATLAB Coder

Embedded
Coder

Embedded
IDE Link

Target
Support
Package Stateflow

Coder

Real-Time
Workshop
Embedded

Coder

Real-Time
Workshop

embedded

The following sections address topics related to the product restructuring.

Resources for Upgrading from Real-Time Workshop or
Stateflow Coder
If you are upgrading to Simulink Coder from Real-Time Workshop or
Stateflow Coder, review information about compatibility and upgrade issues
at the following locations:

• Release Notes for Simulink Coder (latest release), “Compatibility Summary”
section

• In the Archived documentation on the MathWorks web site, select R2010b,
and view the following tables, which are provided in the release notes for
Real-Time Workshop and Stateflow Coder:

- Compatibility Summary for Real-Time Workshop Software

- Compatibility Summary for Stateflow and Stateflow Coder Software

These tables provide compatibility information for releases up through
R2010b.

77

http://www.mathworks.com/help/doc-archives.html

R2011a

• If you use the Embedded IDE Link or Target Support Package capabilities
that now are integrated into Simulink Coder and Embedded Coder, go to
the Archived documentation, select R2010b, and view the corresponding
tables for each product:

- Compatibility Summary for Embedded IDE Link

- Compatibility Summary for Target Support Package

You can also refer to the rest of the archived documentation, including release
notes, for the Real-Time Workshop, Stateflow Coder, Embedded IDE Link,
and Target Support Package products.

Migration of Embedded MATLAB Coder Features to MATLAB
Coder
In R2011a, the MATLAB Coder function codegen replaces the Real-Time
Workshop function emlc. The emlc function still works in R2011a but
generates a warning, and will be removed in a future release. For more
information, see Migrating from Real-Time Workshop emlc Function in the
MATLAB Coder release notes.

Migration of Embedded IDE Link and Target Support Package
Features to Simulink Coder and Embedded Coder
In R2011a, the capabilities formerly provided by the Embedded IDE Link and
Target Support Package products have been integrated into Simulink Coder
and Embedded Coder. The follow table summarizes the transition of the
Embedded IDE Link and Target Support Package hardware and software
support into coder products.

78

http://www.mathworks.com/help/doc-archives.html
http://www.mathworks.com/help/doc-archives.html
http://www.mathworks.com/help/releases/R2012a/toolbox/coder/ref/codegen.html
http://www.mathworks.com/help/releases/R2012a/toolbox/coder/rn/bqmfe_z-10.html#bsveo2c

Coder Product Restructuring

Former Product Supported
Hardware and
Software

Simulink
Coder

Embedded
Coder

Altium® TASKING x

Analog Devices™
VisualDSP++®

x

Eclipse IDE x x

Green Hills® MULTI® x

Embedded IDE Link

Texas Instruments™
Code Composer
Studio™

x

Analog Devices
Blackfin®

x

ARM® x

Freescale™ MPC5xx x

Infineon® C166® x

Texas Instruments
C2000™

x

Texas Instruments
C5000™

x

Texas Instruments
C6000™

x

Linux OS x x

Windows OS x

Target Support
Package

VxWorks® RTOS x

User Interface Changes Related to Product Restructuring
Some user interface changes were made as part of merging the Real-Time
Workshop and Stateflow Coder products into Simulink Coder. They include:

• Changes to code generation related elements in the Simulink Configuration
Parameters dialog box

79

R2011a

• Changes to code generation related elements in Simulink menus

• Changes to code generation related elements in Simulink blocks, including
block parameters and dialog boxes, and block libraries

• References to Real-Time Workshop and Stateflow Coder and related terms
in error messages, tool tips, demos, and product documentation replaced
with references to the latest software

Simulink Graphical User Interface Changes

Where... Previously... Now...

Configuration
Parameters dialog
box

Real-Time Workshop
pane

Code Generation
pane

Model diagram window Tools > Real-Time
Workshop

Tools > Code
Generation

Subsystem context
menu

Real-Time Workshop Code Generation

Subsystem Parameters
dialog box

Following parameters
on main pane:
• Real-Time
Workshop system
code

• Real-Time
Workshop
function name
options

• Real-Time
Workshop
function name

• Real-Time
Workshop file
name options

• Real-Time
Workshop

On new Code
Generation pane
and renamed:

• Function
packaging

• Function name
options

• Function name

• File name options

• File name (no
extension)

80

Coder Product Restructuring

Where... Previously... Now...

file name (no
extension)

81

R2011a

Changes for Desktop IDEs and Desktop Targets

• “Feature Support for Desktop IDEs and Desktop Targets” on page 82

• “Location of Blocks for Desktop Targets” on page 82

• “Location of Demos for Desktop IDEs and Desktop Targets” on page 83

• “Multicore Deployment with Rate Based Multithreading” on page 84

Feature Support for Desktop IDEs and Desktop Targets
The Simulink Coder software provides the following features as implemented
in the former Target Support Package and Embedded IDE Link products:

• Automation Interface

• External Mode

• Multicore Deployment with Rate Based Multithreading

• Makefile Generation (XMakefile)

Note You can only use these features in the 32-bit version of your
MathWorks products. To use these features on 64-bit hardware, install and
run the 32-bit versions of your MathWorks products.

Location of Blocks for Desktop Targets
Blocks from the former Target Support Package product and Embedded IDE
Link product are now located in Simulink Coder under Desktop Targets.

82

Changes for Desktop IDEs and Desktop Targets

Desktop Targets includes the following types of blocks:

• Host Communication

• Operating Systems

- Linux

- Windows

Location of Demos for Desktop IDEs and Desktop Targets
Demos from the former Target Support Package product and Embedded
IDE Link product now reside under Simulink Coder product help. Click the
expandable links, as shown.

83

R2011a

Multicore Deployment with Rate Based Multithreading
You can deploy rate-based multithreading applications to multicore processors
running Windows and Linux. This feature potentially improves performance
by taking advantage of multicore hardware resources.

Also see the Running Target Applications on Multicore Processors user’s
guide topic.

84

http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/bspewvw-1.html#bszx1ja-1

Code Optimizations for Discrete State-Space Block, Product Block, and MinMax Block

Code Optimizations for Discrete State-Space Block,
Product Block, and MinMax Block

The Simulink Coder build process uses a new technique to provide more
efficient code for the following blocks:

• Discrete State-Space

• Product (element-wise matrix operations)

Benefits include:

• Reuse of variables

• Dead code elimination

• Constant folding

• Expression folding

For example, in previous releases, temporary buffers were created to carry
concatenated signals for these blocks. In R2011a, the build process eliminates
unnecessary temporary buffers and writes the concatenated signal to the
downstream global buffer directly. This enhancement reduces the stack size
and improves code execution speed.

The build process also provides more efficient code for the MinMax block. In
R2011a, expression folding is enhanced with several local optimizations that
enable more aggressive folding. This enhancement improves code efficiency
for foldable matrix operations.

85

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/discretestatespace.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/product.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/minmax.html

R2011a

Ability to Share User-Defined Data Types Across
Models

In previous releases, user-defined data types that were shared among
multiple models generated duplicate type definitions in the model_types.h
file for each model. R2011a provides the ability to generate user-defined
data type definitions into a header file that can be shared across multiple
models, removing the need for duplicate copies of the data type definitions.
User-defined data types that you can set up in a shared header file include:

• Simulink data type objects that you instantiate from the classes
Simulink.AliasType, Simulink.Bus, Simulink.NumericType, and
Simulink.StructType

• Enumeration types that you define in MATLAB code

For more information, see Share User-Defined Data Types Across Models in
the Simulink Coder documentation.

86

http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/br9525c.html#bsz75mn-1

C API Provides Access to Root-Level Inputs and Outputs

C API Provides Access to Root-Level Inputs and
Outputs

The C API now provides programmatic access to root-level inputs and outputs.
This allows you to log and monitor the root-level inputs and outputs of a
model while you run the code generated for the model. To generate C API
code for accessing root-level inputs and outputs at run time, select the model
option Generate C API for: root-level I/O.

Macros for accessing C API generated structures are
located in matlabroot/rtw/c/src/rtw_capi.h and
matlabroot/rtw/c/src/rtw_modelmap.h, where matlabroot represents
your MATLAB installation root.

For more information, see Generate C API for: root-level I/O and Data
Interchange Using the C API in the Simulink Coder documentation.

87

http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ref/bq259j_-1.html#bss5v2t-1
http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/bs61qx2.html#f75428
http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/bs61qx2.html#f75428

R2011a

ASAP2 File Generation Supports Standard Axis
Format for Lookup Tables

In previous releases, ASAP2 file generation for lookup table blocks supported
the Fix Axis and Common Axis formats, but not the Standard Axis format, a
format in which axis points are global in code but not shared among tables.
R2011a adds support for Standard Axis format.

For more information, see Define ASAP2 Information for Lookup Tables in
the Simulink Coder documentation.

88

http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/bs61qx2.html#bsqg6ot-1

ASAP2 File Generation Enhancements for Computation Methods

ASAP2 File Generation Enhancements for
Computation Methods

Custom Names for Computation Methods
In generated ASAP2 files, computation methods translate the electronic
control unit (ECU) internal representation of measurement and calibration
quantities into a physical model oriented representation. R2011a adds
the MATLAB function getCompuMethodName, which you can use to
customize the names of computation methods. You can provide names
that are more intuitive, enhancing ASAP2 file readability, or names that
meet organizational requirements. For more information, see Customize
Computation Method Names in the Simulink Coder documentation.

Ability to Suppress Computation Methods for FIX_AXIS When
Not Required
Versions 1.51 and later of the ASAP2 specification state that for certain
cases of lookup table axis descriptions (integer data type and no doc
units), a computation method is not required and the Conversion Method
parameter must be set to the value NO_COMPU_METHOD. Beginning in R2011a,
you can control whether or not computation methods are suppressed
when not required, using the Target Language Compiler (TLC) option
ASAP2GenNoCompuMethod. For more information, see Suppress Computation
Methods for FIX_AXIS in the Simulink Coder documentation.

89

http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/f5595.html#bsz6h9b-1
http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/f5595.html#bsz6h9b-1
http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/f5595.html#bsz6ijv-1
http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/f5595.html#bsz6ijv-1

R2011a

Lookup Table Block Option to Remove Input Range
Checks in Generated Code

When the breakpoint input to a Prelookup, 1-D Lookup Table, 2-D Lookup
Table, or n-D Lookup Table block always falls within the range of valid
breakpoint values, you can disable range checking in the generated code. By
selecting Remove protection against out-of-range input in generated
code on the block dialog box, your code can be more efficient.

90

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/prelookup.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/1dlookuptable.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/2dlookuptable.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/2dlookuptable.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/ndlookuptable.html

Reentrant Code Generation for Stateflow® Charts That Use Events

Reentrant Code Generation for Stateflow Charts That
Use Events

When you generate code for Stateflow charts that use events, the code does not
use a global variable to keep track of the currently active event. Elimination
of this global variable enables the code to be reentrant, which allows you to:

• Deploy your code in multithreading environments

• Share the same algorithm with different persistent data

• Compile code that uses function variables that are too large to fit on the
stack

In previous releases, reentrant code generation was not possible for charts
that used events.

91

R2011a

Redundant Check Code Removed for Stateflow
Charts That Use Temporal Operators

When you generate code for Stateflow charts that use temporal operators, the
code excludes redundant checks for tick events and input events that are
always true. This enhancement enables the code to be more efficient and
applies to temporal operators after, before, at, every, and temporalCount.

In previous releases, the code generated for a temporal logic expression such
as after(x,tick) would check for two conditions:

(event == tick) && (counter > x)

In R2011a, the code generated for after(x,tick) checks only for when the
temporal counter exceeds x:

(counter > x)

This enhancement does not apply when a chart with multiple input events
has super-step semantics enabled.

92

Support for Multiple Asynchronous Function Calls Into a Model Block

Support for Multiple Asynchronous Function Calls
Into a Model Block

Simulink and Simulink Coder software now support multiple asynchronous
function calls into a Model block. This capability relies in part on the new
Asynchronous Task Specification block.

The Asynchronous Task Specification block, in combination with a root-level
Inport block, allows you to specify an asynchronous function-call input to a
Model block. After placing this block at the output port of each root-level
Inport block that outputs a function-call signal, select Output function call
on the Signal Attributes pane of the Inport block. The Inport block then
accepts function-call signals. You can use Asynchronous Task Specification
blocks to specify parameters for the asynchronous task associated with the
respective Inport blocks.

Note Use the new function call API, LibBlockExecuteFcnCall, to make
function calls from an asynchronous source block to reference model
destination blocks.

Note The demo model rtwdemo_async_mdlreftop shows how you can
simulate and generate code for asynchronous events on a real-time
multitasking system, using asynchronous function calls as Model block inputs.

93

http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ref/asynchronoustaskspecification.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/inport.html
http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/tlc/f43806.html#bp6ty7k

R2011a

Changes to ver Function Product Arguments
Compatibility Considerations: Yes

The following changes have been made to ver function arguments related
to code generation products:

• The new argument 'simulinkcoder' returns information about the
installed version of the Simulink Coder product.

• The argument 'rtw' works but now returns information about Simulink
Coder instead of Real-Time Workshop. The software also displays the
following message:

Warning: Support for ver('rtw') will be removed in a future release.

Use ver('simulinkcoder') instead.

• The argument 'coder', which previously returned information about the
installed version of the Stateflow Coder product, no longer works. The
software displays a “not found” warning.

For more information about using the function, see the ver documentation.

Compatibility Considerations

If a script calls the ver function with the'rtw' argument or the'coder'
argument, update the script appropriately. For example, you can update the
ver call to use the 'simulinkcoder' argument, or remove the ver call.

94

http://www.mathworks.com/help/releases/R2012a/techdoc/ref/ver.html

Updates to Target Language Compiler (TLC) Semantics and Diagnostic Information

Updates to Target Language Compiler (TLC) Semantics
and Diagnostic Information

Updates to TLC simplifies semantics and produces diagnostic information
when using the scope resolution operator (::) and built-in function
EXISTS(::).

• If var can not be resolved in global scope, ::var errors out

• If var can only be resolved in local scope, EXISTS(::var) returns false

• Diagnostic information highlights problematic TLC coding

For more information, see Introducing the Target Language Compiler.

95

http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/tlc/f39660.html

R2011a

Change to Terminate Function for a Target Language
Compiler (TLC) Block Implementation

Previously, the code generator attempted to execute the Terminate function
from the TLC implementation of a block, even if the function did not exist.
Now, the code generator only attempts to execute a Terminate function if it
is defined in the TLC implementation of a block. In the case where the TLC
implementation of a block includes a secondary TLC file, which includes a
Terminate function, that Terminate function no longer executes.

96

New and Enhanced Demos

New and Enhanced Demos

The following demos have been added in R2011a:

Demo... Shows How You Can...

rtwdemo_async_mdlreftop Simulate and generate code for asynchronous
events on a real-time multitasking system, using
asynchronous function calls as Model block inputs.

The following demos have been enhanced in R2011a:

Demo... Now...

vipstabilize_fixpt_beagleboard
videostabilization_host_templ

Use the new Video Capture block to simulate
or capture a video input signal in the Video
Stabilization demo.

97

R2011a

Check bug reports for issues and fixes

Software is inherently complex and is not free of errors. The output of a code
generator might contain bugs, some of which are not detected by a compiler.
MathWorks reports critical known bugs brought to its attention on its Bug
Report system at www.mathworks.com/support/bugreports/. Use the Saved
Searches and Watched Bugs tool with the search phrase ‘‘Incorrect Code
Generation’’ to obtain a report of known bugs that produce code that might
compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release.
Examine periodically all bug reports for a release, as such reports may
identify inconsistencies between the actual behavior of a release you are using
and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and
validation strategy to identify potential bugs in your design, code, and tools.

Search R2011a Bug Reports
Known Bugs for Incorrect Code Generation:
www.mathworks.com/support/bugreports/?product=ALL&release=R2011a
&keyword=Incorrect+Code+Generation

All Known Bugs for This Product:
www.mathworks.com/support/bugreports/?release=R2011a&product=RT

98

http://www.mathworks.com/support/bugreports/
http://www.mathworks.com/support/bugreports/?product=ALL&release=R2011a&keyword=Incorrect+Code+Generation
http://www.mathworks.com/support/bugreports/?product=ALL&release=R2011a&keyword=Incorrect+Code+Generation
http://www.mathworks.com/support/bugreports/?release=R2011a&product=RT

	toc
	R2013a
	Data, Function, and File Definition
	Optimized interfaces for Simulink functions called in Stateflow
	Shortened system-generated identifier names

	Code Generation
	Shared utility name consistency across builds with maximum ident
	Code Generation Advisor available on menu bar
	Code generation build when reusable library subsystem link statu
	Protected models usable in model reference hierarchies

	Deployment
	Simplified multi-instance code with support for referenced model
	External mode control panel improvements and C API access
	Improved External mode graphical controls
	C API access from External mode simulations

	Hardware configuration relocation from Target Preferences block
	Support ending for Eclipse IDE in a future release
	GRT malloc target to be removed in future release

	Customization
	MakeRTWSettingsObject model parameter removed
	Check bug reports for issues and fixes
	Search R2013a Bug Reports

	R2012b
	Unified and simplified code interface for ERT and GRT targets
	Error status handling
	Unused macros
	Multitasking functions

	Convenient packNGo dialog for packaging generated code and artif
	Reusable code for subsystems shared by referenced models
	Code generation for protected models for accelerated simulations
	Reduction of data copies with buses and more efficient for-loops
	Reduction of cyclomatic complexity with virtual bus expansion
	Simplifying for loop control statements

	Unified rtiostream serial and TCP/IP target connectivity for all
	Constant parameters generated as individual constants to shared
	Code efficiency enhancements
	Optimized code generation of Delay block
	Search improvements in code generation report
	GRT template makefile change for MAT-file logging support
	Change for blocks that use TLC custom code functions in multirat
	Model rtwdemo_f14 removed from software
	Check bug reports for issues and fixes
	Search R2012b Bug Reports

	R2012a
	Simplified Call Interface for Generated Code
	Incremental Code Generation for Top-Level Models
	Minimal Header File Dependencies with packNGo Function
	ASAP2 Enhancements for Model Referencing and Structured Data
	Ability to Merge ASAP2 Files Generated for Top and Referenced Mo
	ASAP2 File Generation for Test Pointed Signals and States
	ASAP2 File Generation for Tunable Structure Parameters

	Serial External Mode Communication Using rtiostream API
	Improved Data Transfer in External Mode Communication
	Changes for Desktop IDEs and Desktop Targets
	Support Added for GCC 4.4 on Host Computers Running Linux with E
	Limitation: Parallel Builds Not Supported for Desktop Targets

	Code Generation Report Enhancements
	Post-build Report Generation
	Generate Code Generation Report Programmatically
	Searching in the Code Generation Report

	New Reserved Keywords for Code Generation
	Improved MAT-File Logging
	rtwdemo_f14 Being Removed in a Future Release
	New and Enhanced Demos
	Check bug reports for issues and fixes
	Search R2012a Bug Reports

	R2011b
	n-D Lookup Table Block Supports Tunable Table Size
	Complex Output Support in Generated Code for the Trigonometric F
	Code Optimizations for the Combinatorial Logic Block
	Code Optimizations for the Product Block
	Enhanced MISRA C Code Generation Support for Stateflow Charts
	Change for Constant Sample Time Signals in Generated Code
	New Code Generation Advisor Objective for GRT Targets
	Improved Integer and Fixed-Point Saturating Cast
	Generate Multitasking Code for Concurrent Execution on Multicore
	Changes for Desktop IDEs and Desktop Targets
	New Target Function Library for Intel IPP/SSE (GNU)
	Support Added for Single Instruction Multiple Data (SIMD) with I

	Reserved Keyword UNUSED_PARAMETER
	Target API for Verifying MATLAB® Distributed Computing Server™ (
	License Names Not Yet Updated for Coder Product Restructuring
	New and Enhanced Demos
	Check bug reports for issues and fixes
	Search R2011b Bug Reports

	R2011a
	Coder Product Restructuring
	Product Restructuring Overview
	Resources for Upgrading from Real-Time Workshop or Stateflow Cod
	Migration of Embedded MATLAB Coder Features to MATLAB Coder
	Migration of Embedded IDE Link and Target Support Package Featur
	User Interface Changes Related to Product Restructuring
	Simulink Graphical User Interface Changes

	Changes for Desktop IDEs and Desktop Targets
	Feature Support for Desktop IDEs and Desktop Targets
	Location of Blocks for Desktop Targets
	Location of Demos for Desktop IDEs and Desktop Targets
	Multicore Deployment with Rate Based Multithreading

	Code Optimizations for Discrete State-Space Block, Product Block
	Ability to Share User-Defined Data Types Across Models
	C API Provides Access to Root-Level Inputs and Outputs
	ASAP2 File Generation Supports Standard Axis Format for Lookup T
	ASAP2 File Generation Enhancements for Computation Methods
	Custom Names for Computation Methods
	Ability to Suppress Computation Methods for FIX_AXIS When Not Re

	Lookup Table Block Option to Remove Input Range Checks in Genera
	Reentrant Code Generation for Stateflow Charts That Use Events
	Redundant Check Code Removed for Stateflow Charts That Use Tempo
	Support for Multiple Asynchronous Function Calls Into a Model Bl
	Changes to ver Function Product Arguments
	Updates to Target Language Compiler (TLC) Semantics and Diagnost
	Change to Terminate Function for a Target Language Compiler (TLC
	New and Enhanced Demos
	Check bug reports for issues and fixes
	Search R2011a Bug Reports

